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EXTREMAL STRATEGIES IN NON-LINEAR DIFFERENTIAL GAMES* 

E.G. AL'BREKHT 

A game-theoretic problem of guidance /l, 2/ is studied for non-linear 
controlled objects in the case when the control domains of the players 
depend on the phase coordinates. A procedure for constructing the 
reference functions of the domains of accessibility by the objects in 
question is described under specified conditions. The conditions under 
which the reference functions of the domains of accessibility are 
differentiable with respect to the initial position are given. The 
results obtained make it possible to use the rule of extremal aiming 
/l, 2/ to solve the guidance problem. The condition of regularity of 
the game /I/ is introduced in the usual manner, and is confirmed by 
finding a solution to a finite-dimensional extremal problem. It is 
shown that in the regular case the extremal strategies give the game- 
theoretic guidance problem a saddle point. 

1. Formulation of the problem. Consider controlled antagonistic objects described 
by the equations 

y' = u f P (t, y), 2' = u E Q (t, 2) (14 
where @,z are the n-dimensional.phase vectors, U, v are n-dimensionalvectorsofthecontrolling 
actions, and P(t, y), Q(t, 2) are the domainsof controlbytheplayers. Thegameisplayedo+er a 
giventimeinterval ,to< t<@, andthegame payoffisgiven by the relation 

y Itrl = CT (z(6) - y (f+)) = a (t (@)) B(1.2) 

where a&) is a given function of the vector argument x = I - I/. The first pQyer, who is 
in charge ofthecontrol uEP(t, y), tries to minimize the quantity y[@], and the second 
player, in charge of the control VE Q(t, z), tries to maximize the quantity y [Sl. 

We shall assume that at every instant of time t the players know the values of yftl and 

ZM, and the controls are formed according to the feedback principle, i.e. the realized 
values of u[t] and v[t] are formed from the information available concerning the quantities 

y It1 and Z [tl. 
We will determine the admissible strategies U and V of the players in the form of multi- 

valued mappings, semicontinuous from above over the inclusion, which place in correspondence 
with every position {t, y, z) the convex sets .U* (t, y, z)C P (t, y) and v*(& y, 2) C Q (h Z).V and 
we will regard at the motions the solutions of the corresponding contingent equations /l-3/. 

Let &[@]/t,,g,,Z,, U, u) be the realization of the quantity fl..2f corresponding to the 
initial position {to, go, zo) with controls u and u. 

Problem 1.1. We require to find, amongst the admissible strategies U, the optimal 
strategy U” which ensures the inequality 

irrespective of the initial. position {to, ycr 2,). 

Problem 1.2. We require to find, amongst the admissible strategies V, the optimal 
strategy v", which ensures that the inequality 

(y 161/t,, y,, zo, u, P) >max inf sup (y W1to, Yo, 20, u. v) 

v WI WI 

holds irrespective of the initial position (to, g,, Zo}. 
The aim to this paper is to justify the rules of extremal aiming /I, 21 for Solving 

probl.ems 1.1 and 1.2 for controlled objects of the form (1.11, when the domains of control 
by the players depend on the phase coordinates. 

2. Domain of accessibility. Consider the control system 

5. = w E R (t, 5) (W 
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we will assume that the multivalued mapping R(t,x), describing the domain of control, 
satisfiesthefollowing conditions: 

1) R(t,z) is a convex, closed and bounded set depending continuously on the position 

2) any vector w (t, x) E R (t, 5) satisfies the inequality 

II w (6 x)11 d cl (1 + II s II h cl - cmt 

3) we have the following inclusion for any AE [O,ll, dl) 
Ito, 61 

and x@) at almost all tE 

IR (t, 2”‘) + (1 - h) R (t, 0) c R (t, AZ(‘) + (1 

4) irrespective of the value of the non-zero vector q, the 

max $‘w = $‘w” (Ip, t, x) = q hp, t, sl 
ucR(t. r) 

- h) 2P’) 

maximum of the expression 

(2.2) 

is attained on the unique vector w"($, t, x), which is continuous in t, x and 4, andcontinuously 
differentiable in x,and 

11 aw’($, t, x)/8x1) < c,, c, = const 

5) whatever the vector 1, the problem 

has a unique solution {x0 (t/t,,, 

5' = W" (Ip, t, x), 5 (to) = 50 

9’=-[ 
a@ (9, t, 4 ’ 

&. ] a$(*)=~ 

x0, I), $’ (t/to, x0, l)} at all x0. 

(2.3) 

Notes. 2.1. Condition 5) holds for the linear systems if condition 4) holds, and for 
quasilinear systems with additional assumptions /4/. 

2.2. In the case of non-linear systems with a control domain independent of the phase 
coordinates, when the set R(t,z) is defined by the equation 

R (t. z) = (IO: IO = f (t, z, u), w E P (t)) 

where ‘P (t) is a convex, closed and bounded set, condition 3) can be replaced by the 
requirement that the reference function ~)[g,t,s] of the set R(t,z). must be concave in z. 

When conditions 1) and 2) hold, Eq.(Z.l), regarded as a differential equation in con- 
tingencies has, for any initial position {tO,xa}, generally speaking, a non-unique solution 

3 (t/t,* %)* which can be continued for all values of time t> t,. Let us denote by X [to, x01 
the set of solutions of (2.1) emerging from the initial point {t,,zo} and defined on the 
segment [t,,6], i.e. 

x it,, x01 = (5 (t): 2 (t) = 5 (t/t,, x,), t, < t Q e) 

Here the solutions are by definition /l-3/ absolutely continuous functions of = (1) for 
almost all t from the interval [t,, 81, and satisfy the inclusion z'(t)ER (L, S(t)). 

The cross-section of the set X [to, x01 at t =6 will be called the domain of access- 
ibility of system (2.1) from the state x(ta)=s, to the instant of time t=6, and will 
be denoted by G(6, to, x0). Since condition 3) ensures that the set X [to, x01 is convex, it 
follows that when the conditions l)-3) hold, the domain of accessibility G(6, t,,s,) is a 
convex, closed and bounded set. 

In order to give an analytic description of the domain of accessibility G @, to, x0) , we 
shall consider the following problem. 

Problem 2.1. Let i be an arbitrary vector. we require to select, from-the motions 
I (t) E X It,, x01, a motion do) (t), such that 

Z’s(O) (e) = max Z’S (e) = p [I, 6, to, x01 (2.4) 
XWEXk x.1 

The motion 2(O) (t) = do) (t/t,, zo, l), which solves problem 2.1 and the control w(O) (t) = x'(O) (t), 
will be called optimal. The function p 11, 6, to, x01 is a reference function ofthadomain of 
accessibility G(6, to, x0). 

The sufficient conditions of optimality of the control do)(t) and the motion x(O) (t) , 
expressed as a maximum principle, the following form: 

Theorem 2.1. Let the conditions l)-4) hold and let 

(2" (t), q” (t)} = {z” (t/to, GJ, 4, 9” wo, 201 1)) 

be a solution of problem (2.3) for the initial position {to, z,), Then z"(t)= z(O)(t), i.e. 
z"(t) is the optimal motion solving problem 2.1. 

The validity of Theorem 2.1 follows from the general assertions given in the monograph 
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/5/ where a detailed bibliography also appears of works dealing with the derivation of the 
conditions of optimality for the systems described by differential equations. 

We can write the sufficient conditions of optimality in a different form, using the 
standard arguments of the method of dynamic programming. 

Theorem 2.2. Let the conditions l)-2) hold. If a continuously differentiable function 
x(t, z) can be indicated for Eq.(2.1) as well as the set w(t, z)CR(t, z), semicontinuous 
from above on the inclusion when the position {t, z) is varied, such that 

a) whatever the value of the vector w(t,s)~R(t,s), the following inequality holds for 
all t and z 

b) whatever the value of'chevector w" (t, 5) E w" (t, 4 I the following identity is satisfied 
for all t and I 

c) x (et x) = 1‘5, 
then any solution x0 (t), t, < t <6, 9 (to) = x0 of the equation in contingencies 2' E W (t, 2) 
will represent the optimal motion solving problem 2.1. The following relation also holds: 

% (to, xg) = p [I, 6, to, x,1 = max l's(6) (2.5) 
X(N.xC&. x.1 

It follows, that in order to find a solution of problem 2.1 it is sufficient to find a 
continuously differentiable function x(t, x), satisfying the equation 

a$+ (t, 4 
at + max rf+- ax@, 4 =o 

w~R(t, x) 
(2.6) 

provided that 

x (e, 5) = Z'z (2.7) 
To illustrate this, we shall consider a linear control system, i.e. we will assume that 

the set R(t,z) is described by the equation 

R (t, z) = (ID: II) = A (t) z + E (t) Y, Y E P (t)) 

where u is an r-dimensional vector taking values from the convex, closed and bounded set 

P (0, A (0, B (0 are matrices of corresponding dimensions. The reference function of the domain 
of accessibility from any position {fz} has the form /l/ 

(2.8) 

where Y[t,zJ is the fundamental matrix of solutions of the linear homogeneous system V' = 
A W II. The function p.[l,8,t,z] (2.8) is continuously differentiable and is a solution of (2.6) 
with condition (2.7). 

In the general case the sufficient conditions for the function x(t, x), solving the 
Cauchy problem (2.6), (2.7) to exist, are given by the following theorem. 

Theorem 2.3. If the conditions l)-5) hold, then the reference function p[Z,@,t, xl of 
the domain of accessibility G@,t,x) of system (2.1) is continuously differentiable in t and 
I, andsatisfies Eq.(2.6) with condition (2.7). 

Proof. It is sufficient to show that the reference function p [l, 6, t,x] is continuously 
differentiable in x. Let us consider a convergent sequence of points {x0@), k= 1,2, . . .}+ x,,, 
and place in correspondence with it the sequence 1(x" (i/to, x0(“), 1), k = 1, 2,. . .} of optimal 
motions and the sequence of functions {$'(t/t,,, xJk), l), k =i, 2,...}, representing, at every 
x&k' , a unique solution of problem (2.3). The sequences are uniformly bounded and continuous 
to the same power, and hence, by virtue of the uniqueness of the solution of (2.3), the 
following limit relations hold uniformly in tE itor. 61: 

lim 2 (t/t,, zJk), Z) = x0 (t/to, x0, I) (2.9) 
P-m 
iim$," (t/t,, qP), 2) = 9’ (t/t,, x0. 1) 
*- 

Let us consider the solutions x(t/t,, x,, (k) +-y, t), to< t<ft of the system of differential 
equations 

x' = w" (9" (t/t,, x&k), I), t, x), k = 1, 2, . . . (2.10) 

with initial conditions x(t.)= xoth‘) f 8, jIy]I <a,- where (x is a sufficiently small positive 
number. we know /6/ that for sufficiently small cc a solution of system (2.10) exists, is 
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unique and continuously differentiable with respect to the initial vector Y'"' = 50V) + Y, /j _ 
1, 2, . . .; Y(O) = 20 + y. Using the theorems /6/ on the differentiability of solutions of (2.10) 
with respect to the initial data of Eq.(2.9) we find that the following limit relation holds 
for sufficiently small a uniformly in t and y: 

k-m ayck) ap) 
(2.11) 

The method of choosing the function w”($t,~) implies that the following inclusion holds 
for any value of k: 

x (tit,, zp + y, 1) E x [t,, 5p + yl (2.12) 

Let us introduce the functions 

X(k) (to, r,(6) + y) = l's (6/t,, X0(h) + y, I) 

which are defined in some sufficiently small neighbourhood of the point x,ck), k = 1, 2,... are 
differentiable in y for Ily 11 <<a and by virtue of their construction satisfy the relations 

lim x@)(t,, x0@) + y) = 1'9 (Nt,, x0@), E) = x (to, xJk)) (2.13) 
Y-0 

Moreover, from inclusion (2.12) and the definition of the function x(t,,so) (2.5) it 
follows that the following inequality holds for IIYIIG~: 

x(k) (to, x&1’) + y) Q x (t,, x&1’) + y) (2.14) 

Using the relations (2.11)-(2.14) and the arguments used in /7, p.1309/, we can show 
that the following relation holds: 

hn& (p [I, 6, to, zo + Are] - p [Z, 6, to, x0]) z 
I 

a Vz (*‘$+ uv 01 ] 
y=o 

therefore the reference function ~11, 6, t, xl is continuously differentiable in z. 
Using standard arguments of control theory we can confirm that the function x (t, x) = 

p 11, 6, t, sl is a solution of the Cauchy problem (2.6), (2.7). 

3. Extremal strategies. Let the positions Y[t]= Y and z[tl = z be realized at 
some instant of time t. We shall assume that the conditions 1)-S) hold for (1.1) and denote 
by p(l) [Z, 6, t, yl and pfz)[I, 6, t, z] the reference functions of the domains of accessibility 
G(r)@, t, y) and G(B)(6, t, z) for the motions Y(r/t, y) and 2 (z/t, 2) (1.1), t <<z < 6 from the states 
y(t)= y and z(t)= z to the instant r 

We assume that the payoff function 
global Cauchy-Lipschitz condition. Then 

a (I) = m&x {l's - w (1)} 

0 (1) = sup {I's - u (x)}, 
X_" 

where o(1) is a function, conjugate /5, 

= 6. 
o(z)> 0 of the game is convex and satisfies the 
the following relation holds /8/: 

(3.1) 

L = dom o (.) = {E E R": o (I) < oo} 

0/ to the convex function o(x). 
Let us now introduce the maximin program quantity 

8’ (6, t, y, 2) = max min 
Nb)EG@) v(b(~G(~) 

ma& {/‘z (6) - l’y (6) - 0 (1)) 

According to the assertions proved in Sect.2 the domains of accessibility G(l) and G@) 
are convex, closed and bounded, and the conjugate function o(1) is convex. Therefore, using 
the general minimax theorem /9/ we can write 

so (6, t* Y, 2) = FK$ {p'" [E, 6, t, 21 - p(l) [I, 6, t, yl - 0 (1)) (3.2) 

we will consider a regular case /l/ when the maximum on the right-hand side of (3.2) is 
attained, for all positions {t,Y.z}, on the unique vector 2"= 1"@, t,Y,z). 

Definition 3.1. We shall call the strategies U, and V, the extremal strategies (ES) if 
they are determined, at every position {t, Y,z) , by the sets u,* (t,y, z) and V,* (t, y,z), con- 
sisting of all vectors y and V, which satisfy the conditions of maximum 

h’ aP(l) [I”, 6, t, yl/ay = max u’ 6JpCl) [I”, 6, t, Y]/&J 
UEPV. n) (3.3) 

v,‘8p@) [I”, 6, t, 21/&z = max u’8p(*) [I”, 6, t, z.l/~Z 
v~Q(t, 1) 

(1" = I" (6, t, Y, 4) 

In regular case of ES U, and V, are admissible /l, 2/ and the following assertions 
hold. 
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Theorem 3.1. Let the game payoff a@(@)) (1.2) be a convex function satisfying the 
global Cauchy-Lipschitz condition, let conditions U-5) hold for Eqs.(l.l), and let it be the 
regular case. Then the ES U, is the optimal strategy which solves problem 1.1. Moreover, 
we have 

(Y IsIlt,, Y,, SO? u*, y) Q so @, t,, YOl %I1 

whatever the initial position {t,, y,,z,} and whatever the admissible realization v [tl of the 
control v. 

Theorem.3.2. Let the game payoff 0(x,@)) (1.2) be a convex functions satisfying the 
global Cauchy-Lipschitz condition, let conditions If-51 hold for Eqs.(l.l), and let this be 
a regular case. Then the ES V, is the optimal strategy which solves problem 1.2. Moreover, 

fy [Wt,, y,, 20, 6 VA 2a; 8 (4, tot PO3 20) 
whatever the initial position {to, yp, 2,) and whatever the admissible realization u ItI of the 
control u. 

To prove Theorems 3.1 and 3.2 consider the behaviour of t&e derivative &‘~t]/dt of the 
absolutely continuous function s"[t] = so@, t, yjtf, z[tj) along the motions y[t] and z]t] (1.1) 
generated by the strategies V,, V and u, V,. 

We know that in the regular case the right-hand side of (3.2) is continuously differentiab 
in t,y andz. In computing the derivatives the dependence of the vectox E" on the position 

($9 Ii. 21 is ignored; therefore the following relation holds: 

de”[tlldt = BpC” II”, 6, t, illat + u’ It1 ap [lo, 6, t, 21/az - (3.4) 
CTp w, 4, t, ?&at - u’ftl ap(lf [Eo, 6, t, ylr@y 

(1” = 1” (43, t, y, z), y = y M z = z Itl) 

From (3.4), Theorem 2.3 and the definition of ES it follows that de" [tl/dt,( 0 for almost 
all t, provided that the first player sticks to the ES and the second player uses any 
admissible strategy V. If on the other hand the second player sticks to the ES, V,, and the 
first player uses any admissible strategy U, then &"[t]ldt>O for all t, which proves Theorems 
3.1 and 3.2. 

Theorem 3.3. Let the game payoff ~(~(43)) (1.2) be a convex function satisfying the 
global Cauchy-Lipschitz condition, let the conditions l)-5) hold for (1.11, and let this be a 
regular case. Then the ES U, and V, furnish1 a saddle point to the game-theoretic problem of 
aiming, whatever the initial position <to, Yo, zc). 

4. Example. Let us consider the problem of the approach of quasilinear objects in 
the interval I#,,,i?], when the sets P(t,#) an& Q(#,I) describing the domains of control of the 
players have the form 

P (t, P) = (u: u u I 4 F + a II Y IP), e (t, 4 = IV: Ii 0 11 <v -t A II 2 IPl (‘w 

where p>u>O,Z is a small parameter and the function a(x), determining the payoff of the 
game is given by the equation 

a(2)=R.--I/1 (4.2) 

le 

and hence the quantity y[#] (1.2) determines the Euclidean distance between the objects at 
the given inst&t 

Carrying out 
oftime t-6. 
the necessary reduction we obtain 

p"'[1,6,t,y,X]=t'y+Jr/I1It(6-~)+li[illlJU~IP~~-~f+ 

~P’UI/I(b--1)‘fpz~S(e-#).l+... 

pta) [Z,it, t, r, Al = idem (p + v, Y * 11 

In this case Eq.(3.2) has the form 

When p &v7f1 the maximum on the right-hand side of (4.3) will be attained on the unique 
vector P&6,, gts,A) only in the region e">O. Therefore, following /I, 2/ we determine the ES 
v, and Y, as follows: in -the region C70, t<6 the sets 0,' and VS* are composed 
of all. the vectors ws and U& which satisfy the condition of maximum (3.3), and in the region 
k== 0,#<6 we will assume that II**== P and V,*=Q. Waving carried out the necessary reduction, 
we find that the ES of the first and second player are given by the relations: 

a) in the region s*>O, t<$, the sets Ve* (t, g, t, fL) and .V,+(t, p.s.& consists of a single 
point 

0pwv 
q~l=wwlvlP)~= Cl~fh[X(~-p.q&$- ‘)+zrv(e-tt)]+... 
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ue [t] = idem (p-v, y-z, p (1) _ p(2)) 
b) if a"= O,t<6, then 

u,* (t, y, z, a) = P (t, y). V,* Ct. 8. 2, V = Q (ty 4 

The vector lo@, t, Y, z,h), which furnishes a maximum to the right-hand side of Eq.(4.3), 
has the form 

10 = $j- + a (;;ya - [II 5 IP (vz - PY) + .z (- d.2 + P~‘u)l+ . . 

The ES U. and V, determined in this manner furnish the approach game (4.1), (4.2) with 
a saddle point, and the game payoff e'@,t,y,z,h) is given, for any position ~t,~,~}, by the 
equation 

E~=~l2~-(~-v)(f)-t)ili[(II~l~-ll1II~)(ft-~)$ 

1) z u_’ z’(vz - py) (6 - t)* + f (v’ - p’) (6 - tn+ . . . 
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THE APPLICATION OF MONOMIAL LIE GROUPS TO THE PROBLEM OF 
ASYMPTOTICALLY INTEGRATING EQUATIONS OF MECHANICS* 

V.F. ZHURAVLEV 

The basis of the algorithm of the asymptotic integration of equations of 
mechanics discussed below is the representation of the initial system as 
a monomial Lie group of transformations of the phase space into itself. 
Transformations of the system which reduce it to a simpler form are also 
sought in a class of systems possessing group properties. Matching the 
instrument of the analysis to the objective of the analysis enables us 
to limit the operations used in the algorithm to those from the correspond- 
ing operator algebra. 

Hori's paper /l/, in which Lie series were used to construct an 
additional first integral in an autonomous Hamiltonian system, was 
followed by a number of papers which extended this approach to autonomous 
systems of general form (Hori, Kemel et al, a review of whose results can 
be found in /2, 3/J. Note that all these papers are essentially only 
different forms of deriving Hausdorff's formula, which is well-known from 
the theory of Lie groups, complicated somewhat by the concept of parameter 
identification and order separation. Now results can only be obtained 
by refusing to consider systems of general form and by proceeding to 
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