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EXTREMAL STRATEGIES IN NON-LINEAR DIFFERENTIAL GAMES™

E.G. AL'BREKHT

A game-theoretic problem of guidance /1, 2/ is studied for non-linear
controlled objects in the case when the control domains of the players
depend on the phase coordinates. A procedure for constructing the
reference functions of the domains of accessibility by the objects in
questicn is described under specified conditions. The conditions under
which the reference functions of the domains of accessibility are
differentiable with respect to the initial position are given. The
results obtained make it possible to use the rule of extremal aiming
/1, 2/ to sclve the guidance problem. The condition of regularity of
the game /1/ is introduced in the usual manner, and is confirmed by
finding a solution to a finite~dimensional extremal problem. It is
shown that in the regular case the extremal strategies give the game-
theoretic guidance problem a saddle point.

1. Formulation of the problem. Consider controlled antagonistic objects described
by the eguations
y=ucS P yz=vSQ{t ) 1.9
where y,z are the n-dimensional -phase vectors, u, v are n-dimensional vectors of the controlling

actions, and P (i, y), @(t, 2) are the domains of control by the players. The game is played over a
given time interval ., <{t<( &, andthe game payoff is given by the relation

yBl=0(z®) —y@®)=0(@®) 1.2)

where o {z) is a given function of the vector argument z = z - y. The first player, who is
in charge of the control ues P(f, y), tries to minimize the quantity y[@], and the secend
player, in charge of the control ve& Q(t, 2), tries to maximize the quantity y [8)

We shall assume that at every instant of time t the players know the values of ylf] and
z{tl, and the controls are formed according to the feedback principle, i.e. the realized
values of ulf] and vlt] are formed from the information available concerning the quantities
yitl and sl

We will determine the admissible strategies U and V of the players in the form of multi-
valued mappings, semicontinuous from above over the inclusion, which place in correspondence
with every position {f, y, 2} the convex sets U*(t, y,2) C P (t, ¥) and V*(¢t ¥, 2) CQ(t.2), and
we will regard at the motions the solutions of the corresponding contingent equations /1-—3/.

Let (y[6)/tys Yo, % u, v) be the realization of the guantity (1.2) corresponding to the
initial position {#,, ¥am %} with controls u and w.

Problem 1.1. We require to find, amongst the admissible strategies U, the optimal
strategy U° which ensures the inequality

(v [81/ty, Yo» 20, U, v) < min sup inf (v [#)/tg. ¥os 200 U, v)
U oft} yit]

irrespective of the initial position {fs Ve 2o}
Problem 1.2. We require to find, amongst the admissible strategies V, the optimal
strategy V°, which ensures that the ineguality
{7 [81/ty, Yo %o» u, V*) 2> max inf sup (v [8)/ty, ¥o, 20, v, V)
v uft] 2(f)

holds irrespective of the initial position {fp ¥er %o}

The aim to this paper is to justify the rules of extremal aiming /1, 2/ for solving
problems 1.1 and 1.2 for controlled objects of the form (1.1), when the domains of control
by the players depend on the phase coordinates.

2. Domain of accessibility. Consider the control system
r=we R ) (2.1)

*prikl.Matem.HMekhan. ,50,3,3392~345,1986

255



256

We will assume that the multivalued mapping R (i, ), describing the domain of control,
satisfies the following conditions:

1) R(t, z) 1s a convex, closed and bounded set depending continuously on the position
{t, z};

2) any vector w(l, z)< R (t, z) satisfies the inequality

Nwit, )l <<ey (1 +1xll), ey — const

3) we have the following inclusion for any A& [0,1), 2® and z® at almost all t&
[z,, 01

AR(t, ™)+ (1 — MR (t, 2@ R (¢, Az® + (1 — 4) 2®)
4) irrespective of the value of the non-zero vector ¢, the maximum of the expression

max Y'w =P’ (P, t, 2) = [y, t, ] (2.2)
weR(t, x)
is attained on the unique vector w°($, #, ), which is continuous in ¢, * and ¢, and continuously
differentiable in z, and

|| du° (§, t, z)/0z|} < ¢35, € = const
5) whatever the vector I, the problem
z =u’ (\Pv t, I)., z (to) = To (2'3)

. w° (), ¢, !
o [_'”_L‘;BILE.)_] ¥, p(B)=1
has a unique solution {a° (t/ty, zo, 1), §° (¢/t,, o, 1)} at all z,.

Notes. 2.1. Condition 5) holds for the linear systems if condition 4) holds, and for
quasilinear systems with additional assumptions /4/.

2.2. In the case of non-linear systems with a control domain independent of the phase
coordinates, when the set R(t z) is defined by the equation

Rit,z)={w:w=7f(tzu), usP ()

where P () 1is a convex, closed and bounded set, condition 3) can be replaced by the
requirement that the reference function qy,¢ z] of the set R(t z) must be concave in «z.

When conditions 1) and 2) hold, Eq.(2.1), regarded as a differential equation in con-
tingencies has, for any initial position {%, %o}, generally speaking, a non-unique solution
Z (t/ty, To)» which can be continued for all values of time (2> %, Let us denote by X [, z,l
the set of solutions of (2.1) emerging from the initial point {{,, z,} and defined on the
segment [t,, #], i.e.

X [tg, 2o = {2 (&): 2 (t) = z (Htyy 7y), Lo < T B}

Here the solutions are by definition /1—3/ absolutely continuous functions of z(f) for
almost all t from the interval [t;, ®#], and satisfy the inclusion =z’ ()& R (3, x (1))

The cross-section of the set X [f, z,] at t=10 will be called the domain of access-
ibility of system (2.1) from the state z(¢)=2, to the instant of time ¢=1%, and will
be denoted by G (#, to, %0). Since condition 3) ensures that the set X [t 2] is convex, it
follows that when the conditions 1)-—3) hold, the domain of accessibility G@, ¢, z,) is a
convex, closed and bounded set.

In order to give an analytic description of the domain of accessibility G (@, &y, 7p), we
shall consider the following problem.

Problem 2.1, Let I be an arbitrary vector. We require to select, from the motions

z(t)e X [y, zo), a motion z® (f), such that
UVz® (§) = max lVz@®) =pll, 8, to zl (2.4)
(DS X[ty %)

The motion z® (¢) = = (t/ty, x4, 1), which solves problem 2.1 and the control w® (t) = 2'® (1),
will be called optimal. The function pl[l, &, %, 2, is a reference function of the domain of
accessibility G (®, o, Zo)-

The sufficient conditions of optimality of the control w® (f) and the motion za® (¢),
expressed as a maximum principle, the following form:

Theorem 2.1. Let the conditions 1)—4) hold and let
{£ @), v (@)} = {a° (t/t0, xoy 1), ¥ (t/ty, o, 0}

be a solution of problem (2.3) for the initial pesition {t,, o}, Then 2°(f)= z® (1), i.e.
z° () is the optimal motion solving problem 2.1,
The validity of Theorem 2.1 follows from the general assertions given in the monograph
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/5/ where a detailed bibliography also appears of works dealing with the derivation of the
conditions of optimality for the systems described by differential equations.

We can write the sufficient conditions of optimality in a different form, using the
standard arguments of the method of dynamic programming.

Theorem 2.2. Let the conditions 1)—2) hold. If a continuously differentiable function
%x (¢, r) can be indicated for Eq.(2.1) as well as the set W°(t, ) C R (¢, z), semicontinuous
from above on the inclusion when the position {t, z} is varied, such that

a) whatever the value of the vector w(t, ) &= R (¢, ), the following inequality holds for
all t and =z

6u(t z) +w(t gy 2hz) dx(tz) <0

b) whatever the value of thevector w°(t, z)& W"(t, z), the following identity is satisfied
for all t and 2

6x(t z)

III
o

23 (l z) + wol (t x)

c) (8, 2)=10z,
then any solution 2°(f), {, < t<#®, 2°(t,) = 2, of the equation in contingencies z'e& W°(t, z)
will represent the optimal motion solving problem 2.1. The following relation also holds:

% (tgy Tg) =p ll, 0, 8, 2 = max Uz (B) 2.5)
(=X (L, %)

It follows, that in order to find a solution of problem 2.1 it is sufficient to find a
continuously differentiable function x% (t, z), satisfying the equation

an (t z) M (t,z)
provided that
%@ z) =10z 2.7)

To illustrate this, we shall consider a linear control system, i.e. we will assume that
the set R (1) is described by the equation

Rit,2) ={w:w=A4A{@)z+B(t)u, us P ()}
where u is an r-dimensional vector taking values from the convex, closed and bounded set

P (), A(t),B(t) are matrices of corresponding dimensions. The reference function of the domain
of accessibility from any position {¢, z} has the form /1/

0
pLL, 8, t,2] =Y [8, t]:z-(-—S max UY[®,17) B(t)udt (2.8)
{ ueP(t)

where Y |[t,1} is the fundamental matrix of solutions of the linear homogeneous system y =
A (yy. The function p[l,8,¢ 2] (2.8) is continuously differentiable and is a solution of (2.6)
with condition (2.7).

In the general case the sufficient conditions for the function x (t, z), solving the
Cauchy problem (2.6), (2.7) to exist, are given by the following theorem.

Theorem 2.3. If the conditions 1)—5) hold, then the reference function pll, ®,¢, 2] of
the domain of accessibility G (8, ¢, z) of system (2.1) is continuously differentiable in t and
z, and satisfies Eq.(2.6) with condition (2.7).

Proof. It is sufficient to show that the reference function p [l ¥, t, 2] is continuously
differentiable in z. Let us consider a convergent sequence of points {z,®, k=1,2,...} =z,
and place in correspondence with it the sequence {2° (t/ty, z,®, ¥), k =1, 2,...} of optimal
motions and the sequence of functions {§° (¢, z,®, I), k =1,2,...}, representing, at every
z,¥? , a unique solution of problem (2.3). The sequences are uniformly bounded and continuous
to the same power, and hence, by virtue of the unigueness of the solution of (2.3), the
following limit relations hold uniformly in &€& [ty 9]:

Il‘im 2° (t/tg, 7™, 1) = 2° (t/ty, zpy 1) (2.9
}im ¥ (t/ty, 2™, 1) = §° (t/ty, xg 1)

Let us consider the solutions =z (t/ty, o™ -y, O t, <t<<® of the system of differential
equations
z = w® (P° (t/ty, z,®, 1), ¢, 2, k=1,2,... (2.10)
with initial conditions z (¢) = 2, + ¥, |yl < @, where a is a sufficiently small positive
number. We know /6/ that for sufficiently small @ a solution of system (2.10) exists, is
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unique and continuously differentiable with respect to the initial vector y® = z® 4y, & =
1, 2, .. ¥y =gy + y. Using the theorems /6/ on the differentiability of solutions of (2.10)
with respect to the initial data of Eg.(2.9) we find that the following limit relation holds
for sufficiently small o uniformly in t and y:
k
Jim 2202 400 e, zo0.0)

k- By(k) = ay(O) (211)

The method of choosing the function w°(y,¢, ) implies that the following inclusion holds
for any value of k:

z (tty, 2™ + y, ) = X [tg, 7% + yl (2.12)
Let us introduce the functions

*® (tg, 2y® + y) = Uz (Bte, 2™ + g, 1)

which are defined in some sufficiently small neighbourhood of the point z,®,k=1,2,... are

differentiable in y for ||y <{a and by virtue of their construction satisfy the relations
lim %® (¢, 2,5 + y) = Uz° (8/ty, 2,8, 1) = % (£, z,5) (2.13)
y—0

Moreover, from inclusion (2.12) and the definition of the function % (fo, Zo) (2.5) it
follows that the following inequality holds for ||yfi<<a:
x® (g, 2%+ y) < % (ty, 2® + y) (2.14)
Using the relations (2.11)~(2.14) and the arguments used in /7, p.1309/, we can show
that the following relation holds:

lim .31_ e[l ®, to, zo + Azo] — p [L, B, 2o, Zo]} ={ 3 [Vz (Bto, o+, D)] }
Ax—p BF0 v=0

3y(0)

therefore the reference function pfi, @, ¢, 2] is continuously differentiable in z.
Using standard arguments of control theory we can confirm that the function % (t, z) =
pll, ®, t, z]1 1is a solution of the Cauchy problem (2.6), (2.7).

3. Extremal strategies. Let the positions yltl=y and z[t] =z be realized at
some instant of time t. We shall assume that the conditions 1)—5) hold for (1.1) and denote
by p® [1, 9, t, y] and p®@ ][I, 9, ¢, z] the reference functions of the domains of accessibility
GO(@®, t, y) and G (P, t,2z) for the motions y(v/t, y) and z(v/t, 2) (1.1), t v B from the states
y()=y and z(f)=1z to the instant v =%

We assume that the payoff function o (z)>> 0 of the game is convex and satisfies the
global Cauchy-Lipschitz condition. Then the following relation holds /8/:

o (z) = rln;Lx {'z — o (1)} (3.1)
o()=sup {{'z—o0(z)}, L=dom o (-)={IER™ o (I) < o}
x&R"

where o () is a function, conjugate /5, 8/ to the convex function o (z),
Let us now introduce the maximin program quantity

¢ # y, 2) = max min  max {I'z() — 'y (®) — o (I
ec® yeecl)  leL ¥z ®) y® 0}

Accoxding to the assertions proved in Sect.2 the domains of accessibility G® and G®
are convex, closed and bounded, and the conjugate function o (!) is convex. Therefore, using
the general minimax theorem /9/ we can write

€@ty 2= max (@[, 0, t, 2l —p® (1, 0, ¢, yl — w ()} (3.2)
We will consider a regular case /1/ when the maximum on the right-hand side of (3.2) is
attained, for all positions {t ¥, 2}, on the unique vector = I°(#, t, y, 3).

Definition 3.1. We shall call the strategies U, and V, the extremal strategies (ES) if
they are determined, at every position {t y,2}, by the sets U/*(t,y,2) and V,*(t, y,2), con-
sisting of all vectors u, and v, which satisfy the conditions of maximum

u, 8 [P, 8, ¢, ylidy = max u’ dpW [P, 9, ¢, yl/dy (3.3
ues P, v)

v,'0p® [I°, O, t, z1/0z = max v'ap® [, &, ¢, 3)/0z
v=Q(t, 2)

E=r@®ty 2)

In regular case of ES U, and V¥, are admissible /1, 2/ and the following assertions
hold.
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Theorem 3.1. Let the game payoff ¢{z{8)) {(1.2) be a convex function satisfying the
global Cauchy-~Lipschitz condition, let conditiong 1)—5) hold for Egs.{(l1.l), and let it be the
regular case. Then the ES U, is the optimal strategy which solves problem 1.1. Moreover,
we -have

(? {0}/30: ym Sm Ues v) < eo (ﬁs tm ym Zo)

whatever the initial position {fy, Yo 2} and whatever the admissible realization v [} of the
control .

Theorem 3.2. Let the game payoff oz, (#) (1.2) be a convex functions satisfying the
global Cauchy-Lipschitz condition, let conditions 1)—5) hold for Egs.(l1.1l}, and let this be
a regular case. Then the E§ V, is the optimal strategy which solves problem 1.2. Moreover,

(v [0Vty, yos 200 s Vi) > £ {8, 14, Yor 20)
whatever the initial position {f Ve %o} and whatever the admissible realization u {t] of the
control u.

To prove Theorems 3.1 and 3.2 consider the behaviour of the derivative de’lt]/dt of the
absolutely continuous function ¢ [t =¢" (8, t, y (1], z[t]) along the motions ylf] and z[ (1.1)
generated by the strategies U,, ¥V and U, V,.

We know that in the regular case the right-hand side of (3.2) is continuocusly differentiable
in ¢ ¥ and z. In computing the derivatives the dependence of the vector I on the position
{t, y, z} is ignored; therefore the following relation holds:

de’lt)/de = p® [P, 8, t, 2ot + v [l 6p® [P, ¥, ¢, 20z — (3.4)
p® [, 9, t, yliot — wltl p® [P, 8, ¢, yl/oy

E=@ty 2 y=yllz=zl)

From (3.4), Thecorem 2.3 and the definition of ES it follows that de°[tl/dt <0 for almost
all t, provided that the first player sticks to the ES and the second player uses any
admissible strategy V. If on the other hand the second player sticks to the ES, V,, and the
first player uses any admissible strategy U, then de’ftl/di > 0 for all t, which proves Theorems
3.1 and 3.2.

Theorem 3.3. Let the game payoff o(z(#)) (1.2) be a convex function satisfying the
global Cauchy-~Lipschitz condition, let the conditions 1)-5) hold for (1.1), and let this be a
regular case. Then the BES [/, and V., furnishia saddle point to the game-theoretic problem of
aiming, whatever the initial position {fy, ¥, Zo}.

4., Example. ©Let us consider the problem of the approach of quasilinear objects in
the interval li, 8], when the sets P,y and Q3 describing the domains of control of the
players have the form

P,y = (w jul<p+ryPh Q= {ulvi<v+AlzP} (4.1)
where p>v>0,4 is a small parameter and the function o{s), determining the payoff of the
game is given by the equation

s@=lz—y} (4.2)
and hence the quantity y[] (1.2) determines the Euclidean distance between the objects at
the given instant of time ¢=49.

Carrying out the necessary reduction we obtain
PO, 9, ty M =y U@~ D+ AR RO~ +
IO — 0l (O — 1
o@ (1,9, ¢ 2, M =idem {n — v,y — 3}

In this case Eg.(3.2) has the form
& (ﬂ' b Yy 2 3-) max {p(a) [l, ﬂ t, 5, l’l b P(U [lv 0 4 e )"“f L= (4.3)
dom w () = {& utaqn

When p >+v>0 the maximum on the right-hand side of (4.3) will be attained on the unique
vector I°(8,%,¢.5,A) only in the region & >0. Therefore, following /1, 2/ we determine the ES
U, and V, as follows: in_the region & >0,t1<9® the sets Us and V& are composed
of all the vectors u, and v, which satisfy the condition of maximum (3.3), and in the region
= 0,t<? we will assume that Ugp=P and V.=, Having carried out the necessary reduction,
we find that the ES of the first and second player are given by the relations:

a) in the region >0, t<8 the sets U Ly, 53 and V2 {,y 54 consists of a single
point

u, (2] = (0 A [w )

=.plo A [z( o] ‘””l‘f", )+2Hv(ﬂ-{)]+

ap/ay
I m“’ 19y}
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v, [1] = idem {p — v, y — 7, p — p®}
b) if & =0,t<¥% then

Utz =Py, Ve* by, 50 =03

The vector P°(®,¢, v,2,A), which furnishes a maximum to the right-hand side of Eq. (4.3),

has the form

— 1)2
P o A P s — ) (= v )]

The ES U, and V, determined in this manner furnish the approach game (4.1), (4.2) with

a saddle point, and the game payoff e°(®, ¢ y,2, 4 is given, for any position {4 y,z}, by the

equation
e =]z]—p—-v(@—t)FA[(zP =1y (-0 +
1
llzll"-‘l'(vz—w)(ﬁ—f)’-l-—g‘(\”—b"’)(ﬁ—t)a]-i-- .-
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THE APPLICATION OF MONOMIAL LIE GROUPS TO THE PROBLEM OF
ASYMPTOTICALLY INTEGRATING EQUATIONS OF MECHANICS'

V.F. ZHURAVLEV

The basis of the algorithm of the asymptotic integration of equations of
mechanics discussed below is the representation of the initial system as

a monomial Lie group of transformations of the phase space into itself.
Transformations of the system which reduce it to a simpler form are also
sought in a class of systems possessing group properties. Matching the
instrument of the analysis to the objective of the analysis enables us

to limit the operations used in the algorithm to those from the correspond-
ing operator algebra.

Hori's paper /1/, in which Lie series were used to construct an
additional first integral in an autonomous Hamiltonian system, was
followed by a number of papers which extended this approach to autonomous
systems of general form (Hori, Kemel et al, a review of whose results can
be found in /2, 3/). Note that all these papers are essentially only
different forms of deriving Hausdorff's formula, which is well-known from
the theory of Lie groups, complicated somewhat by the concept of parameter
identification and order sepaxation. Now results can only be obtained
by refusing to consider systems of general form and by proceeding to
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